PHYSICAL REVIEW E 68, 057601 (2003

Temporal solitons in quadratic nonlinear media with opposite group-velocity dispersions
at the fundamental and second harmonics
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Temporal solitons in quadratic nonlinear media withrmal second-harmonic dispersion are studied theo-
retically. The variational approximation and direct simulations reveal the existence of soliton solutions, and
their stability region is identified. Stable solutions are found for large and normal values of the second-
harmonic dispersion, and in the presence of large group-velocity mismatch between the fundamental- and
second-harmonic fields. The solitofwr solitonlike pulsesare found to have tiny nonlocalized tails in the
second-harmonic field, for which an analytic exponential estimate is obtained. The estimate and numerical
calculations show that, in the parameter region of experimental relevance, the tails are completely negligible.
The results open a way to the experimental observation of quadratic solitons with normal second-harmonic
dispersion, and have strong implication to the experimental search for multidimensional “light bullets.”
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Optical solitons are localized electromagnetic waves thathe normal material GVD present at the wavelengths studied.
propagate steadily in nonlinear media resulting from a robusHowever, pulse-tilting consumes a transverse degree of free-
balance between nonlinearity and linear broadening due tdom, preventing soliton confinement along that dimension.
dispersion and/or diffraction. It is well known that cubic non- This lack of confinement was seen by L&t al. who ob-
linear materials support temporal solitofs, but that the served(3+1)D filaments resulting from the transverse insta-
resulting balance is unstable to collapse in higher than onbility of (2+1)D STS[15]. These filaments were similar in
dimension[2]. This collapse is arrested in materials with nature to light bullets, but did not propagate stably due to
saturable nonlinearity [3,4], allowing for the formation of residual angular dispersion from the pulse tilting technique.
solitons in two and three dimensiof@D and 3D. To date, all experiments observing temporal solitons and

Of great interest, theoretically and experimentally, areSTS in quadratic media have utilized pulse-tilting, so there is
spatiotemporal solitongSTS confined in time and both significant motivation to generate quadratic temporal solitons
transverse spatial dimensiorfdight bullets”) [5]. Unlike  in systems without pulse tilt, where the extension to light
temporal solitons, spatial solitons, and quasi-383$S con-  bullets is possible.
fined only in one transverse dimensjplight bullets are the Surveying available quadratic materials leads to the con-
only truly stable solitons in a three-dimensional geometryclusion that large anomalous GVD at the FF is accessible,
[6]. In addition to their fundamental significance, STS are ofwithout significant linear absorption, if this frequency is cho-
interest for their technological applications, as they providesen in the infrared; however, the GVD is accompanied by
for the possibility of terahertz switching rates when utilized significant group-velocity mismatctGVM) between the FF
in optical digital logic[7]. and SH. In addition, in this case the GVD at the SH ranges

In recent years, spatial solitons have been extensivelfrom near zero to large normal values. So, one is motivated
studied in systems with saturable nonlinearity resulting fromto consider solitons witmormal GVD at the SH. Recently,
the photorefractive effect in electro-optic materig3, and  STS in the(2+1)D and(3+1)D cases were considered under
in quadratic nonlinear media, with an effectively saturablethese condition$16]. It was found that, for a limited range
nonlinearity resulting from cascaded quadratic processesf parameters, soliton®r solitonlike pulses with tiny non-
[9,8]. Theoretically, many kinds of solitons in quadratic non- localized tails which would not be experimentally accessible
linear media have received significant attentiéor review  do exist for normal GVD at the SH and in the presence of
see Refs[10] and[11]). However, quadratic temporal soli- some GVM. However, the existence and stability of the more
tons[12] and(2+1)D STS[13,14 have been observed only fundamental temporal soliton&e., 1D rather than multidi-
recently. The main impediment to the formation of temporalmensional pulsgsunder conditions of normal GVD at the
solitons(and ST$ in quadratic materials is the historically SH has never been considered. This is the subject of the
perceived need for large anomalous group-velocity disperpresent work.
sion (GVD) at both the fundamental frequengyF) and the Temporal solitons in this system are particularly interest-
second harmoni¢SH). In particular, the above mentioned ing from an experimental standpoint. If observed without the
experiments utilized anomalous GVD that was induced bypulse-tilting technique, these would be the crucial step to the
angular dispersion from a gratirfgulse tilting to overcome  formation of true light bulletgeither directly through modu-

lation instability in the spatial domain or by launching STS
under conditions similar to those for temporal solitor@n
*Corresponding author. Electronic address: kb77@cornell.edu the other hand, one would naturally expect the stability re-
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quirements for solitons in 1D to be less stringent than for 167 ‘ ]
STS, allowing formation and observation of the solitons over 14 cee . &
a broader andnore experimentally accessibienge of val- 121 y
ues of the GVM and normal GVD at the SH. 1ol © ¢

Below, we present results of both analytifbased on the s 8f © ¢
variational approximation, VAand direct numerical investi- 6L © M
gations of temporal solitons in quadratic media with normal al PN
GVD at the SH. We show that while the resulting solitary o B
pulses feature the aforementioned nonlocalized tails and thus ol ‘

Y

are not localized in the rigorous sense, with proper choice of 3 2
the parameters they may be completely localized in any prac-
tical Sense, so that the resulting waves are indisti_nguishable FIG. 1. Stability region for solutions ne@=0. Filled (empty)
from genuine sohtons.c_)ver experimentally accessible ProP&jiamonds show numerically stablenstablg solutions. Stability is
gation lengths. In "’,‘dd,'t,'on' the pulses are shown to persist 'Betermined by examining evolution of the solutions oved4 dis-
the presence of significant GVM between the FF and SH,ersion lengths. The line is the soliton-existence bounzay(4)],
fields, which is crucial to their experimental observationpregicted by the VA'stable solutions are predicted to the right of
S|nce a” quadratIC materla|S g'Ve I‘ISG to GVM SOI'tOn“ke the boundary Results are for the case of zero GVM-:% o)
solutions are demonstrated under accessible experimental pa-
rameters, and the implications of the results to the formation Qur consideration is broken into three parts: analysis of
of (2+1)D and(3+1)D STS in these systems are discussedsolutions to Eqs(1) and(2) using the VA in the zero-GVM
Within the commonly adopted slowly varying envelope |imit, numerical simulation of the propagation equations
approximation, the coupled equations governing the interadyithout GVM, and finally a study of the effects of GVM on
tion of the FF and SH field envelopes &ndv, respectively  the resulting solutions.
propagating in thez direction in a medium with quadratic In the zero-GVM cased=0), the VA is applied to Egs.

nonlinearity arg6,17] (1) and(2) with §<0. Starting with the real Gaussiansatz
u=Aexp(p7), v=B exp(y7), we arrive at an equation
iu+u,+u*v—-u=0, (1) for the temporal-width parameter (cf. Ref.[18]):
02 206p°+ (46— 3a)p®+4ap—a=0. 3
2i(v,tov,)+ov,,+=—av=0. 2 ] o )
2 Equating the discriminant of E(q3) to zero yields the
boundary

Hereu andv are related to the fieldg; andE, (in units
of the initial peak FF fieldEy) by E;=(u/2)e?, E, ap=consts, const=—13.605..., (4)
=pe'(¥?? anda=4-2AkZ,; Ak=k,,— 2k, is the wave-

vector mismaich between the FF and SH fields, ahd obtained from Eq(3) and the underlying Gaussiansat
=n\/mx?)E, characterizes the strength of the nonlinear i) € ying -

. — we construct an initial guess and employ the shooting
coupllng._ The GVM parameteurz_ 2LpsiZi/Lgym IS ex- method to obtain numerically exact stationary solutions to
pregse?z)ln terms of the dispersion and GVM lendtBs;  Eqgs. (1) and (2) (see Fig. 3 for a typical example, to be
=10/|B}”| and Lgyy=c7o/(N1g—nyg), respectively, for discussey
material dispersiog{”) and group-velocity index; 4 at fre- The stability of the stationary solutions, which is a critical
quencye; with j=1,2. Timer and propagation coordinate jssue, was tested by direct simulations of E(9.and (2)
are normalized byyZ,/2Lps;, and Z;, respectively.§  using a symmetric split-step beam-propagation method as
=21 8{?) is the ratio between the GVD's at the SH and described in Ref[14]. Points symbolizing stable and un-
FF. In Egs.(1) and(2) the GVD at the FF is assumed to be stable propagation are collected in Fig. 1, along with the
anomalous, so that>0 and§<0 correspond, respectively, soliton-existence boundary, as predicted by the VA in the
to anomalous and normal GVD’s at the SH. While it is trueform of Eq. (4). Gaussian profiles are launched in the nu-
that soliton solutions are expected with normal GVD at bothmerical simulationgas is further discussed lajerand ab-
the FFand the SH(and negative nonlinearitythis case is sorptive boundary conditions are employed to suppress en-
not really different from the usual one. However, the resultsergy radiated beyond the calculation window.
reported here are equally applicable to the case of normal The agreement between E@) and the actual border of
GVD at the FF and slightly anomalous GVD at the SH,the stable solutions, as found from the simulations, is quite
which is also physically realizable in available quadratic me+easonable, and is better for small With increasinga
dia. It is important to note, however, that in the multidimen- (which implies approaching the known cascading limit
sional case diffraction only has one sign, and the existence ¢f.0,11]), stable solutions are found for somewkeger | 5|
localized solutions demands that the sign of the GVD term iri.e., larger normal GVD at the SHhan predicted by the
the FF equationEq. (1)] be the same as that of diffraction. VA. Somewhat surprisingly, stable solutions are found for
Hence only the case of anomalous GVD at the FF can giveuite large values dfs|, up to 5~ —2, with the appropriate
rise to multidimensional solitons. choice ofa. For instance, Fig. 2 displays stable propagation

above which(i.e., for > ag) real solutions exist. Using

057601-2



BRIEF REPORTS PHYSICAL REVIEW B8, 057601 (2003

(O ——— —_— 0 @

= T - a

2 (a) FF w > : : , -2 \

g gl ...... (C) 4 \

e} o —~ -6

© o)

i‘; : DS) T8 \

g -10 . +

2 12

- -14

) 6

c

S —~ 5

s 2

so. 5 ¢

= g3

2] ©

5 s 2

= = 1

oL ‘ ‘
. ) 0 025 05 075 1
FIG. 2. Evolution of the FRa) and SH(b) fields for «=13.6 v (arb. units)

and 6= —2. A Gaussian pulse was launched solely in the FF field.
Propagation is over-64 dispersion lengths. Insét) shows the FIG. 3. (@ The amplitude of the cw componetiail) of the SH
time-integrated total energgine), as well as the energy in the FF field (diamonds, as found from the shooting solution of Eq. 3 with
(uppey and SH(lower) components. 6=—0.15, vsa. The line indicates the predicted dependence in the

form of Eq.(5). (b) The shooting resultésolid line) and the corre-
of the solution withd=—2 [i.e., GVD(2w) = — GVD(w)] sponding VA predictior{dashed lingfor u andv (upper and lower

anda=13.6. This is in contrast to the results for tt2e-1)D :[]Z‘:fj;i;iﬂ?e;s“cviﬁi’:ﬁ's gH_ t7a|EI3 'p-rr;seeﬁ? Gc;r)ned region ) shows
and (3+1)D cased[16], where STS are found to be stable '

only for much smaller valued §| <0.15). In Fig. 1, stability

is defined by the requirement that less tha®% of the tude ona, along with a fit to Eq(5). Up to @~ 20, the decay
energy in the formed field is lost after propagation throughof the tail amplitude follows Eq(5) closely. For still larger
~64 dispersion lengths; some solutions near the boundarg. the tail amplitudeb decays slower.

which are characterized as unstable only decay-By-20 % The presence of the tail means that the solutions found are
(with the decay increasing further into the normal SH GVvDnot strictly localized; however, for appropriate and 6 the
regime. SH peak-to-tail ratio can be easily magel0*. This explains

Despite the robustness of the pulses in numerical simula¥hy no decay is observed in Fig.(@nd in simulations of
tions, their strict localization must be addressed. This issue igther stable solutions witl#<0 in Fig. 1. Pulses with an
particularly important due to the counter-intuitive nature oféxponentially small cw component will appear as true soli-
stable or even quasistable pulses with normal GVD at théons in any feasible experiment. The conditions under which
SH. If a small delocalizecontinuous wave, cjcomponent  the tails are minimizedlarge «) correspond precisely to the
is present in the SH, linearization of Ed4) and(2) shows transition to an effective Kerr-like medium in the cascading
that it has the formv =b cos(/(a/|8])| 7|+ ¢o) Where gy is limit, when the sign of the SH dispersion is not significant.
an unknown constant, ariglis the tail's amplitudeb can be ~ Notice also the close proximity of the numerical solutions to
estimated by solving the linearized version of Ef). for u,  the Gaussiaransatz Based on this, Gaussian profiles are
and using the result to solve E() with the sourcedriving  launched in numerical simulations.
term) u%/2. The source is Fourier transformed, and then its It is also necessary to address the effect of GV&J bn
product with the Green’s function for the SH field is inversethe stability of the solutions. Numerically, we study the ef-
transformed. Following these line&f. Ref. [16], where fects of GVM by direct simulations, starting from a point in
similar analysis was performed for the multidimensionalthe (a,0) plane with known stable solution far=0, and
cas®, it is possible to isolate a term in the solution representincreasing o. Figure 4 shows the stable solution at
ing the cw “tail,” and arrive at an estimate for the tail's =13.6, = —0.5, with increasing GVM. It is apparent from

amplitude, the figure that small GVM §=2) has little effect on the
stability of the solution. Remarkably, some of the soliton
b~exp(—Cval|d]), (50 keeps a part of its energy for GVM up @~ 30. This is
unlike in higher dimensiongl6], where GVM very quickly
whereC is an unknown constant. destabilizes the solitons. At conditions that correspond to re-

To test Eq.(5) we use the shooting method as describedalistic experimental parameters in quadratic nonlinear media,
above with = —0.15 and various values af [numerical this corresponds to GVM of several picosecond/millimeter.
error of the shooting method is estimated to-b©®(10%)]. This result greatly increases the chance of observing the
Figure 3 shows the dependence of the resulting tail's amplisolitons experimentally. Values of the normalized parameters
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1.6 ‘ at the SH present a new degree of freedom in the space of
A g Abnia 1 experimental parameters. In particular, most available qua-
1.4
) \M] MWVVNVVIN [o-0 dratic media have a zero GVM point in the infrared, but at
g2 &Y VA\/\/\/\/\j’\,‘U‘._g‘s wavelengths corresponding to large normal GVD at the SH.
g 1 Thus, the ability to work with normal SH dispersion could
308 \ allow experimental study of solitons witeroGVM (in ad-
.%‘ ’ NN~~~ [ o5 dition to large values of). Given present materials this is
506 \ ; unlikely to apply to STS, where the requirements ®mre
Eo4l\ >— 3 much more restrictive.
b \ — Lo=10 In summary we have demonstrated that quadratic nonlin-
02\ T— — o020 ear media support temporal solitons with normal GVD at the
—~—
0 M— 0=60 SH. Formally, these solutions are not strictly localized, how-
0 10 20 30 40 50 60 70 80 . : ; )
z (units of L) ever, with appropriate choice of the parameters, the residual

cw tail in the SH field can be reduced ts10 % of the

FIG. 4. Peak FF profiles showing effects of increased GVM onSOIitOWS a_mp"tUde' Experimentally there ShOU'F" be no ‘?'e'
soliton formation ate=13.6 ands=—0.5. Up too~1.2 profile tectable difference between these and true soliton solutions

shows no decay. As in Figs. 1 and 2, a Gaussian FF profile i§Ve€r measurable propagation lengths. Numerically, the soli-
launched. ton solutions survive even in the presence of significant
GVM. This should provide an important medium for the

. . L study of quadratic solitons in the temporal and, eventually,
for the commonly used quadratic material periodically pOIedspat?/oten?poral domains. P Y

lithium niobate in the infraredat A~3 um) area=~12, §

~—0.5, ando~1.3, which are well within the effective This work was supported by the National Science Foun-

stability range found above for the solitons. The initial pointdation under Grant No. PHY-0099564, and the Binational

in (a, 6) used in Fig. 4 was picked from the stability region (U.S.-Israel Science FoundatioriContract No. 1999459

of Fig. 1. Starting closer to the boundary yields somewhatVe thank D. Mihalache, A. V. Buryak, L. Torner, |. N. Tow-

less resilience to GVM, as expected. ers, L. Qian, and H. Zhu for valuable discussions. Computa-
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