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Temporal solitons in quadratic nonlinear media with opposite group-velocity dispersions
at the fundamental and second harmonics
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Temporal solitons in quadratic nonlinear media withnormal second-harmonic dispersion are studied theo-
retically. The variational approximation and direct simulations reveal the existence of soliton solutions, and
their stability region is identified. Stable solutions are found for large and normal values of the second-
harmonic dispersion, and in the presence of large group-velocity mismatch between the fundamental- and
second-harmonic fields. The solitons~or solitonlike pulses! are found to have tiny nonlocalized tails in the
second-harmonic field, for which an analytic exponential estimate is obtained. The estimate and numerical
calculations show that, in the parameter region of experimental relevance, the tails are completely negligible.
The results open a way to the experimental observation of quadratic solitons with normal second-harmonic
dispersion, and have strong implication to the experimental search for multidimensional ‘‘light bullets.’’
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Optical solitons are localized electromagnetic waves t
propagate steadily in nonlinear media resulting from a rob
balance between nonlinearity and linear broadening du
dispersion and/or diffraction. It is well known that cubic no
linear materials support temporal solitons@1#, but that the
resulting balance is unstable to collapse in higher than
dimension@2#. This collapse is arrested in materials wi
saturablenonlinearity @3,4#, allowing for the formation of
solitons in two and three dimensions~2D and 3D!.

Of great interest, theoretically and experimentally, a
spatiotemporal solitons~STS! confined in time and both
transverse spatial dimensions~‘‘light bullets’’ ! @5#. Unlike
temporal solitons, spatial solitons, and quasi-STS~STS con-
fined only in one transverse dimension!, light bullets are the
only truly stable solitons in a three-dimensional geome
@6#. In addition to their fundamental significance, STS are
interest for their technological applications, as they prov
for the possibility of terahertz switching rates when utiliz
in optical digital logic@7#.

In recent years, spatial solitons have been extensiv
studied in systems with saturable nonlinearity resulting fr
the photorefractive effect in electro-optic materials@8#, and
in quadratic nonlinear media, with an effectively satura
nonlinearity resulting from cascaded quadratic proces
@9,8#. Theoretically, many kinds of solitons in quadratic no
linear media have received significant attention~for review
see Refs.@10# and @11#!. However, quadratic temporal sol
tons@12# and~211!D STS@13,14# have been observed onl
recently. The main impediment to the formation of tempo
solitons ~and STS! in quadratic materials is the historicall
perceived need for large anomalous group-velocity disp
sion ~GVD! at both the fundamental frequency~FF! and the
second harmonic~SH!. In particular, the above mentione
experiments utilized anomalous GVD that was induced
angular dispersion from a grating~pulse tilting! to overcome
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the normal material GVD present at the wavelengths stud
However, pulse-tilting consumes a transverse degree of f
dom, preventing soliton confinement along that dimensi
This lack of confinement was seen by Liuet al. who ob-
served~311!D filaments resulting from the transverse inst
bility of ~211!D STS @15#. These filaments were similar in
nature to light bullets, but did not propagate stably due
residual angular dispersion from the pulse tilting techniq
To date, all experiments observing temporal solitons a
STS in quadratic media have utilized pulse-tilting, so there
significant motivation to generate quadratic temporal solito
in systems without pulse tilt, where the extension to lig
bullets is possible.

Surveying available quadratic materials leads to the c
clusion that large anomalous GVD at the FF is accessi
without significant linear absorption, if this frequency is ch
sen in the infrared; however, the GVD is accompanied
significant group-velocity mismatch~GVM! between the FF
and SH. In addition, in this case the GVD at the SH rang
from near zero to large normal values. So, one is motiva
to consider solitons withnormal GVD at the SH. Recently,
STS in the~211!D and~311!D cases were considered und
these conditions@16#. It was found that, for a limited range
of parameters, solitons~or solitonlike pulses with tiny non-
localized tails which would not be experimentally accessib!
do exist for normal GVD at the SH and in the presence
some GVM. However, the existence and stability of the m
fundamental temporal solitons~i.e., 1D rather than multidi-
mensional pulses! under conditions of normal GVD at th
SH has never been considered. This is the subject of
present work.

Temporal solitons in this system are particularly intere
ing from an experimental standpoint. If observed without t
pulse-tilting technique, these would be the crucial step to
formation of true light bullets~either directly through modu-
lation instability in the spatial domain or by launching ST
under conditions similar to those for temporal solitons!. On
the other hand, one would naturally expect the stability
©2003 The American Physical Society01-1
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quirements for solitons in 1D to be less stringent than
STS, allowing formation and observation of the solitons o
a broader andmore experimentally accessiblerange of val-
ues of the GVM and normal GVD at the SH.

Below, we present results of both analytical@based on the
variational approximation, VA# and direct numerical investi
gations of temporal solitons in quadratic media with norm
GVD at the SH. We show that while the resulting solita
pulses feature the aforementioned nonlocalized tails and
are not localized in the rigorous sense, with proper choice
the parameters they may be completely localized in any p
tical sense, so that the resulting waves are indistinguish
from genuine solitons over experimentally accessible pro
gation lengths. In addition, the pulses are shown to persis
the presence of significant GVM between the FF and
fields, which is crucial to their experimental observati
sinceall quadratic materials give rise to GVM. Solitonlik
solutions are demonstrated under accessible experimenta
rameters, and the implications of the results to the forma
of ~211!D and~311!D STS in these systems are discuss

Within the commonly adopted slowly varying envelop
approximation, the coupled equations governing the inte
tion of the FF and SH field envelopes (u andv, respectively!
propagating in thez direction in a medium with quadrati
nonlinearity are@6,17#

iuz1utt1u* v2u50, ~1!

2i ~vz1svt!1dvtt1
u2

2
2av50. ~2!

Hereu andv are related to the fieldsE1 andE2 ~in units
of the initial peak FF fieldE0) by E15(u/2)eiz, E2
5vei (a/2)z, anda5422DkZI ; Dk5k2v22kv is the wave-
vector mismatch between the FF and SH fields, andZI
5nl/px (2)E0 characterizes the strength of the nonline
coupling. The GVM parameters5A2LDS,1ZI /LGVM

2 is ex-
pressed in terms of the dispersion and GVM lengthsLDS, j

5t0
2/ub j

(2)u and LGVM5ct0 /(n1,g2n2,g), respectively, for
material dispersionb j

(2) and group-velocity indexnj ,g at fre-
quencyv j with j 51,2. Timet and propagation coordinatez
are normalized byAZI /2LDS,1, and ZI , respectively. d
[2b2

(2)/b1
(2) is the ratio between the GVD’s at the SH an

FF. In Eqs.~1! and ~2! the GVD at the FF is assumed to b
anomalous, so thatd.0 andd,0 correspond, respectively
to anomalous and normal GVD’s at the SH. While it is tr
that soliton solutions are expected with normal GVD at b
the FFand the SH ~and negative nonlinearity!, this case is
not really different from the usual one. However, the resu
reported here are equally applicable to the case of nor
GVD at the FF and slightly anomalous GVD at the S
which is also physically realizable in available quadratic m
dia. It is important to note, however, that in the multidime
sional case diffraction only has one sign, and the existenc
localized solutions demands that the sign of the GVD term
the FF equation@Eq. ~1!# be the same as that of diffraction
Hence only the case of anomalous GVD at the FF can g
rise to multidimensional solitons.
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Our consideration is broken into three parts: analysis
solutions to Eqs.~1! and ~2! using the VA in the zero-GVM
limit, numerical simulation of the propagation equatio
without GVM, and finally a study of the effects of GVM o
the resulting solutions.

In the zero-GVM case (s50), the VA is applied to Eqs.
~1! and~2! with d,0. Starting with the real Gaussianansatz,
u5A exp(2rt2), v5B exp(2gt2), we arrive at an equation
for the temporal-width parameterr ~cf. Ref. @18#!:

20dr31~4d23a!r214ar2a50. ~3!

Equating the discriminant of Eq.~3! to zero yields the
boundary

a05const•d, const'213.6075 . . . , ~4!

above which~i.e., for a.a0) real solutions exist. Usingr
obtained from Eq.~3! and the underlying Gaussianansatz,
we construct an initial guess and employ the shoot
method to obtain numerically exact stationary solutions
Eqs. ~1! and ~2! ~see Fig. 3 for a typical example, to b
discussed!.

The stability of the stationary solutions, which is a critic
issue, was tested by direct simulations of Eqs.~1! and ~2!
using a symmetric split-step beam-propagation method
described in Ref.@14#. Points symbolizing stable and un
stable propagation are collected in Fig. 1, along with
soliton-existence boundary, as predicted by the VA in
form of Eq. ~4!. Gaussian profiles are launched in the n
merical simulations~as is further discussed later!, and ab-
sorptive boundary conditions are employed to suppress
ergy radiated beyond the calculation window.

The agreement between Eq.~4! and the actual border o
the stable solutions, as found from the simulations, is qu
reasonable, and is better for smalla. With increasinga
~which implies approaching the known cascading lim
@10,11#!, stable solutions are found for somewhatlarger udu
~i.e., larger normal GVD at the SH! than predicted by the
VA. Somewhat surprisingly, stable solutions are found
quite large values ofudu, up tod;22, with the appropriate
choice ofa. For instance, Fig. 2 displays stable propagat

FIG. 1. Stability region for solutions neard50. Filled ~empty!
diamonds show numerically stable~unstable! solutions. Stability is
determined by examining evolution of the solutions over;64 dis-
persion lengths. The line is the soliton-existence boundary@Eq. ~4!#,
predicted by the VA~stable solutions are predicted to the right
the boundary!. Results are for the case of zero GVM (s50).
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of the solution withd522 @i.e., GVD(2v)52GVD(v)]
anda513.6. This is in contrast to the results for the~211!D
and ~311!D cases@16#, where STS are found to be stab
only for much smaller values (udu&0.15). In Fig. 1, stability
is defined by the requirement that less than;5% of the
energy in the formed field is lost after propagation throu
;64 dispersion lengths; some solutions near the bound
which are characterized as unstable only decay by;5 –20 %
~with the decay increasing further into the normal SH GV
regime!.

Despite the robustness of the pulses in numerical sim
tions, their strict localization must be addressed. This issu
particularly important due to the counter-intuitive nature
stable or even quasistable pulses with normal GVD at
SH. If a small delocalized~continuous wave, cw! component
is present in the SH, linearization of Eqs.~1! and ~2! shows
that it has the formv5b cos(A(a/udu)utu1f0) wheref0 is
an unknown constant, andb is the tail’s amplitude.b can be
estimated by solving the linearized version of Eq.~1! for u,
and using the result to solve Eq.~2! with the source~driving
term! u2/2. The source is Fourier transformed, and then
product with the Green’s function for the SH field is inver
transformed. Following these lines~cf. Ref. @16#, where
similar analysis was performed for the multidimension
case!, it is possible to isolate a term in the solution represe
ing the cw ‘‘tail,’’ and arrive at an estimate for the tail’
amplitude,

b;exp~2CAa/udu!, ~5!

whereC is an unknown constant.
To test Eq.~5! we use the shooting method as describ

above withd520.15 and various values ofa @numerical
error of the shooting method is estimated to be;O(1025)].
Figure 3 shows the dependence of the resulting tail’s am

FIG. 2. Evolution of the FF~a! and SH~b! fields for a513.6
andd522. A Gaussian pulse was launched solely in the FF fie
Propagation is over;64 dispersion lengths. Inset~c! shows the
time-integrated total energy~line!, as well as the energy in the F
~upper! and SH~lower! components.
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tude ona, along with a fit to Eq.~5!. Up toa'20, the decay
of the tail amplitude follows Eq.~5! closely. For still larger
a, the tail amplitudeb decays slower.

The presence of the tail means that the solutions found
not strictly localized; however, for appropriatea and d the
SH peak-to-tail ratio can be easily made*104. This explains
why no decay is observed in Fig. 2~and in simulations of
other stable solutions withd,0 in Fig. 1!. Pulses with an
exponentially small cw component will appear as true so
tons in any feasible experiment. The conditions under wh
the tails are minimized~largea) correspond precisely to th
transition to an effective Kerr-like medium in the cascadi
limit, when the sign of the SH dispersion is not significa
Notice also the close proximity of the numerical solutions
the Gaussianansatz. Based on this, Gaussian profiles a
launched in numerical simulations.

It is also necessary to address the effect of GVM (s) on
the stability of the solutions. Numerically, we study the e
fects of GVM by direct simulations, starting from a point
the (a,d) plane with known stable solution fors50, and
increasing s. Figure 4 shows the stable solution ata
513.6, d520.5, with increasing GVM. It is apparent from
the figure that small GVM (s&2) has little effect on the
stability of the solution. Remarkably, some of the solit
keeps a part of its energy for GVM up tos;30. This is
unlike in higher dimensions@16#, where GVM very quickly
destabilizes the solitons. At conditions that correspond to
alistic experimental parameters in quadratic nonlinear me
this corresponds to GVM of several picosecond/millimete

This result greatly increases the chance of observing
solitons experimentally. Values of the normalized parame

.
FIG. 3. ~a! The amplitude of the cw component~tail! of the SH

field ~diamonds!, as found from the shooting solution of Eq. 3 wit
d520.15, vsa. The line indicates the predicted dependence in
form of Eq. ~5!. ~b! The shooting results~solid line! and the corre-
sponding VA prediction~dashed line! for u andv ~upper and lower
traces, respectively! with a57.5. The zoomed region in~c! shows
the residual oscillatory SH tail present in~b!.
1-3
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for the commonly used quadratic material periodically po
lithium niobate in the infrared~at l;3 mm) area'12, d
'20.5, ands'1.3, which are well within the effective
stability range found above for the solitons. The initial po
in (a, d) used in Fig. 4 was picked from the stability regio
of Fig. 1. Starting closer to the boundary yields somew
less resilience to GVM, as expected.

While realistic material parameters most likely necessit
working with s.0, solitonlike solutions with normal GVD

(units of LDS)

FIG. 4. Peak FF profiles showing effects of increased GVM
soliton formation ata513.6 andd520.5. Up tos'1.2 profile
shows no decay. As in Figs. 1 and 2, a Gaussian FF profil
launched.
v,

.W

U
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at the SH present a new degree of freedom in the spac
experimental parameters. In particular, most available q
dratic media have a zero GVM point in the infrared, but
wavelengths corresponding to large normal GVD at the S
Thus, the ability to work with normal SH dispersion cou
allow experimental study of solitons withzeroGVM ~in ad-
dition to large values ofs). Given present materials this i
unlikely to apply to STS, where the requirements ond are
much more restrictive.

In summary we have demonstrated that quadratic non
ear media support temporal solitons with normal GVD at
SH. Formally, these solutions are not strictly localized, ho
ever, with appropriate choice of the parameters, the resid
cw tail in the SH field can be reduced to&1024 of the
soliton’s amplitude. Experimentally there should be no d
tectable difference between these and true soliton solut
over measurable propagation lengths. Numerically, the s
ton solutions survive even in the presence of signific
GVM. This should provide an important medium for th
study of quadratic solitons in the temporal and, eventua
spatiotemporal domains.
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